
88 Linux Format December 2006

Security: Probe
Locktight Security How to use smart
Linux tools to safeguard your machine

PART 3: This month: vulnerability scanning. Chris Brown shows you how to
seriously test the windows and rattle the doorknobs of your network.

Dr Chris
Brown
is a freelance Linux
instructor with a
PhD in particle
physics and Novell
CLP and Red Hat
RHCE certification.
He has just written
a book on SUSE
Linux for O’Reilly.

Our
expert

Last month We looked at unneeded services, Bastille and SUSE’s security wizard.

 (Fig 1) Command options for Nmap. This is your
quick-reference guide to building an Nmap command (you'll
have to read the man page to learn what the scan types are).

nmap -sT -p 20-100 192.168.0.1-50

Range of port numbers.
You can also add a
protocol specifier such
as T:21-25 to scan a
range of TCP ports.

Range of IP addresses.
You can also use wildcards (as
in 192.168.*.*) or CIDR-style
netmasks (as in
192.168.0.0/16) or full domain
names (as in foo.example.com).

Scan type. Other types include:
-sS TCP SYN scan (‘half-open’).
-sP Ping scanning.
-sV Version detection scan.
-sF Stealth FIN scan.
-sX ‘Xmas Tree’ scan.
-sM ‘Null’ scan.

This month we’re going to take a look at tools that will help
you to find vulnerabilities in your system. Obviously, tools
that scan for vulnerabilities have both white-hat and black-

hat uses, and I want to repeat what I said in the first part of this
series: first, I absolutely do not condone the use of such tools to
gain unauthorised access. Second, before running these tools on
machines at work, you must get approval from your manager.

Vulnerability assessment tools fall into two categories: those
that operate from outside the system, and those that operate
from inside. Our first tool, Nmap, is a port scanner and belongs
firmly in the ‘outside’ category. Nmap can determine which ports
are open (that is, it listens for connections) and it can easily be
made to scan a large number of machines. It works by sending a
series of network packets to a specified range of port numbers
and IP addresses, and waiting to see what happens.

Here’s a straightforward example of running Nmap. My home
network is rather small – the more so since a lightning strike
recently destroyed all but two of the ports on my router – but
there’s enough output to give you the idea:
$ nmap -sT -p 20-100 192.168.0.1-50
Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-08-
01 15:18 BST
Interesting ports on 192.168.0.1:
(The 78 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
23/tcp filtered telnet
53/tcp open domain

80/tcp open http
Interesting ports on 192.168.0.3:
(The 78 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
80/tcp open http
All 81 scanned ports on 192.168.0.4 are: closed
Nmap finished: 50 IP addresses (3 hosts up) scanned in 12.269
seconds

Fig 1 (below) shows some of the Nmap command options. The
most interesting are the scan types. A full appreciation of these
requires a fairly deep understanding of TCP/IP; in particular, the
TCP flags and the standard sequence of TCP packets used to
create a TCP connection. The -sT scan type shown in Fig 1
attempts a full three-way handshake to establish a TCP
connection, just like an actual client would. Such a scan is very

‘visible’, in the sense that it is likely to cause the target system to
record the connection in a log file. However, it has the benefit that
it can be performed by a non-root user. There are other scan types
that are less likely to be noticed. For example, what Nmap calls the

‘stealth FIN scan’ sends a TCP packet with just the FIN flag set.
(FIN is one of the flags in the packet header.) Under normal
operation of TCP, such a packet should only occur during the
closure of a TCP connection – it should never be sent to a port on
which a connection has not already been established. The
response of a target system to such probes can help determine

LXF86.tut_security Sec2:88LXF86.tut_security Sec2:88 2/10/06 18:43:412/10/06 18:43:41

Locktight Security Tutorial

December 2006 Linux Format 89

 Nmap 4.11 your system

Vulnerabilities vs exploits
We use the terms ‘exploit’ and ‘vulnerability’ so often then they
can appear to be interchangeable – but this is not the case. A
vulnerability is any design error that allows a user to acquire
privileges on your system beyond those that they are intended
to have. (The posh term for this is ‘privilege escalation’.)
Vulnerabilities are not the same as configuration errors (though
both can create security holes), so these tools will typically not
find even gross errors such as a world-writeable /etc/shadow.

An exploit is a piece of software, a chunk of cunningly-crafted
data or a sequence of commands that takes advantage of a
vulnerability in order to achieve privilege escalation, either to
gain control of a computer system, or in some cases simply to
mount a denial of service attack. It’s possible for a vulnerability
to exist ‘in theory’ – that is, without any known exploit, but it isn’t
possible to have an exploit without a vulnerability.

Run Nmap as root if
you want to perform
stealth scans that
are less likely to be
noticed by the
target system.

Quick
tip

Missed an issue? Call 0870 837 4773 or +44 1858 438795.

which ports are actually open for listening. The TCP/IP
specifications do not always tightly specify the behaviour of the
system under these abnormal conditions, and even if they do,
implementations do not always follow the specification. Because
the response to these non-standard TCP packets is operating-
system specific, this approach can be effective in determining the
type of the target system. The scan types that involve the use of
malformed TCP packets require Nmap to open a raw socket, so
that it can build the packet headers explicitly. Consequently, these
scans can only be performed as root.

Fingerprinting with Nmap
Nmap’s -A flag enables operating system fingerprinting and
service version detection. Here’s an example:
$ nmap -A scanme.nmap.org
Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-08-
04 09:30 BST
Interesting ports on scanme.nmap.org (205.217.153.62):
(The 1657 ports scanned but not shown below are in state:
filtered)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 4.3 (protocol 2.0)
25/tcp closed smtp
53/tcp open domain
70/tcp closed gopher
80/tcp open http Apache httpd 2.2.2 ((Fedora))
113/tcp closed auth
Nmap finished: 1 IP address (1 host up) scanned in 94.760
seconds

Nmap is a great tool for finding out what ports and services are
actually accessible on your network. You can ensure that ports
that should be open are open, that ports which should be closed
are closed, and that your firewall is behaving as it should. You
might want to run it from both inside and outside your firewall, and
compare the results. (We’ll talk about creating firewalls with Linux

later in this series.) Nmap has many tricks up its sleeve beyond
those I’ve hinted at here. For example, it can be told to fragment IP
packets into tiny pieces. The idea (to quote the man page,) is to

“split up the TCP header over several packets to make it harder for
packet filters, intrusion detection systems and other annoyances
to detect what you are doing”. For more information about Nmap,
read the man page (which is exceptionally good), or visit
http://insecure.org/nmap.

Vulnerability scanning
Now we come to vulnerability scanners. These scanners usually
feed off some sort of knowledge base of vulnerabilities that is
external to the scanner itself. Consequently, their effectiveness
depends not only on the quality of the scanner but also on how
actively the vulnerability knowledge base is updated. One of the
best and most actively maintained scanners is Nessus, from
Tenable Network Security (www.nessus.org).

Nessus has a client and server component. The server, called
nessusd, is the piece that performs the actual tests; the client,
called Nessus client, is a graphical application that enables you to
log in to the server, specify the tests you want to perform and view
the test results. This client–server architecture enables servers to
be placed at various strategic points on your network (for example,
inside or outside the firewall) allowing tests to be conducted from
several points of view.

For this tutorial I installed Nessus on my Fedora Core 5 box. At
www.nessus.org/download you can find pre-built RPMs of
Nessus for various Linux distros including Debian 3.1, Red Hat
Enterprise Linux 3 and 4, Fedora Core 4 and 5, and SUSE 9.3 and
10 (it’s free but closed source). I installed the files Nessus-3.0.3-
fc5.i386.rpm and NessusClient-1.0.0.RC5-fc5.i386.rpm.

For the client to connect to the server, it must present a valid
username and password, so you’ll need to create a Nessus user
account on the machine on which you plan to run the server.
These accounts are only used to control login to Nessus, and
aren’t related to regular Linux accounts. The account creation tool
is quite chatty and self-explanatory. Here’s an example of the
command line dialog with this tool:
/opt/nessus/sbin/nessus-add-first-user
Using /var/tmp as a temporary file holder
Add a new nessusd user

Login : joe

How Nmap talks to you
Nmap usually reports each port as being in one of three states:

 Open The port is accessible and is listening for connections.
 Closed It is accessible but is not listening for connections.
 Filtered The port is not accessible (probably because the

probes that Nmap is sending are being filtered by an intervening
firewall), so Nmap cannot determine if the port is open or closed.

LXF86.tut_security Sec2:89LXF86.tut_security Sec2:89 2/10/06 18:43:432/10/06 18:43:43

90 Linux Format December 2006

Tutorial Locktight Security

 (Fig 2) Nessus uses this screen to show details of all its plugins. You can also use
this screen to select the targets you want to scan, view the reports and much more.

 (Fig 3) The panels on the Nessus report screen enable you to
dig right down into the details of the report.

Caveat Scannor
Take care when scanning production servers with Nessus – some of the scans perform
denial of service attacks and may bring the server down. Such scans are disabled by
default; nonetheless I managed to scan my ADSL router to death and had to cycle the
power to revive it. The best time to perform a vulnerability scan is before a server goes
into production. If you need to scan it later, choose a time when temporary loss of service
will have minimal impact.

Authentication (pass/cert) [pass] : pass
Login password :
Login password (again) :
User rules

nessusd has a rules system which allows you to restrict the hosts
that joe has the right to test. For instance, you may want
him to be able to scan his own host only.
Please see the nessus-adduser(8) man page for the rules syntax
Enter the rules for this user, and hit ctrl-D once you are done :
(the user can have an empty rules set)
accept 192.168.0.0/24
default deny
Login : joe
Password : ***********
DN :
Rules :
accept 192.168.0.0/24
default deny
Is that ok ? (y/n) [y]
user added.

Each user has an associated set of rules, which restricts the
systems that a user can scan. The simple two-rule set shown
above enables Joe to scan systems on the 192.168.0.0/24
network, and nothing else.

The server also needs an SSL certificate to authenticate itself
to the client. The Nessus installation comes with a pre-built
certificate, but if you want to create your own, use the nessus-
mkcert command.

Now you’re ready to start the Nessus daemon. On Fedora I can
start the daemon manually like this:

service nessusd start
To perform a security scan, start the graphical client:
$ /usr/X11R6/bin/NessusClient

To begin, select File > Connect and log in to the Nessus server
using the login you created earlier. The first time you connect, the
server’s SSL certificate will be presented to you. You’ll need to
manually verify this and accept it. Once you’ve connected, the
available plugins will be downloaded, and you can select the ones
you want to run. Fig 2 (left) shows an example, though what you
can’t see in this figure are the checkboxes that allow you to select
the tests (they’re covered up by the window that presents a
detailed description of one specific test).

Why plugins? Well, Nessus uses them to perform the actual
vulnerability tests. A plugin in Nessus is a script written in a
purpose-designed language called NASL (Nessus Attack Scripting
Language). On my Fedora installation, the plugins are stored in /
opt/nessus/lib/nessus/plugins (there are over 11,000 of
them!). The screen shown in Fig 2 provides a tree view of the
available plugins. Under the SUSE Local Security Checks category,
for example, about 200 are listed. Click on an individual plugin for
a description of the test that it performs – an example is shown in
the figure. Use the Target Selection screen to specify the target
machines you wish to scan.

There are other tabs you may wish to visit. For example, use
the Credentials screen to specify credentials for SMB and SSH
logins on the target. All in all, you’ll need to spend some time
exploring these screens to get the most out of Nessus.

When the scan is configured to your liking, select Scope >
Execute to run it. Nessus will show you progress bars for each of
the machines being targeted.

The Nessus report screen
Once the scan is complete, you can view the report screen shown
in Fig 3 (below). Pick a subnet, then a specific host. You’ll see a list
of the open ports, and against each one an icon indicating the
severity of the security issue associated with it. Select a specific
port to see the associated severity warnings, and a specific
warning to see a detailed description of the security issue and
suggested fix.

Nessus begins by scanning for open ports on the target
machine. For each open port, the find_service plugin tries to
identify what runs behind it; first by trying SSL connections, then
plain connections, then by sending miscellaneous sequences to
the service and looking at the answers.

Nessus then tries miscellaneous attacks on every open port.
For example, if an open port is found with an HTTP or HTTPS
server behind it, all plugin scripts that target web servers will be

LXF86.tut_security Sec2:90LXF86.tut_security Sec2:90 2/10/06 18:43:442/10/06 18:43:44

Locktight Security Tutorial

December 2006 Linux Format 91

Next month We’re going to build a firewall – in just four pages. Wish me luck!

Do not perform
vulnerability scans
on machines at
work without your
manager’s
permission!

Quick
tip

 (Fig 4) Sussen delivers its output in the form of an HTML file that details the results of the tests that have been performed. There's an awful lot of
information to get through here, but as with all vulnerability scanners, you do actually need to read the results to get the benefit.

launched. Nessus probes remote services using plugins that
attempt to exploit known vulnerabilities such as input validation,
buffer overflows, improper configuration, and so on.

I recall an inspired line from The Goon Show that goes
something like: “I know what the time is. I wrote it down yesterday.”
Knowledge of the time is not the only knowledge that ages quickly.
New software vulnerabilities are discovered daily, and Tenable
Network Security provides a feed of plugin updates for Nessus to
track these. In fact, when you register to download Nessus, an
activation code is emailed to you. Once you have this, run
nessus-fetch --register <your activation code>

which will register your activation code and download all the latest
plugins. Subsequently you should run nessus-update-plugins on
a regular basis (perhaps as a daily Cron job) to keep up to date.

Despite its power and popularity, Nessus remains rather under-
documented; however, there is one book, Nessus Network
Auditing by Renaud Deraison (who also wrote much of Nessus),
published by Syngress Media.

Sussen: Nessus from the inside
Another vulnerability assessment tool I came across recently is
Sussen (yes, it’s Nessus backwards). Sussen runs a set of
vulnerability and configuration tests as defined in a file written in
OVAL (the Open Vulnerability and Assessment Language.) Sussen
consists of three executables: sussen-agent (the tool that
performs the actual tests, and presents the results in a browser);
sussen-applet (a simple Gnome applet that lets you run Sussen
without resorting to the command line); and sussen-editor (a
graphical editor for the OVAL files). Sussen is one of those
newfangled applications written for a C#/.NET environment, so it
requires a recent version of Mono and glibc 2.4, among other

things, which puts it out of reach of some current mainstream
distributions. However, with a little help from Sussen’s author,
Loren Bandiera, I was able to get it working on my Fedora Core 5
installation. Fig 4 (above) shows a sample of the output.

Sussen is a work in progress, particularly the editor. You can
enter new definitions and tests, but you can’t actually read these
from, or save them to, a file (yet). You can read more about Sussen
at http://dev.mmgsecurity.com/projects/sussen.

According to its website (http://oval.mitre.org), OVAL
“enables interoperability between security products by providing a
standard XML language with which to exchange information”.
Again, the basic idea is to separate system vulnerability
information from the programs that need to use it. Typically,
vulnerability definitions are of the form, “If you have version X of
software Y you are subject to vulnerability Z”, though, being written
in XML, it takes several dozen lines to actually represent this.

Really, Sussen is just an engine for running the vulnerability
tests defined in the OVAL files and presenting the results. As far as
I can tell, it does a perfectly adequate job of this. However, the
effectiveness of the tool is only as good as the OVAL files
themselves. Red Hat seem to have embraced the idea; it publishes
extensive vulnerability reports using OVAL (see www.redhat.com/
oval), though I see no evidence that SUSE (for example) has done
the same. Although I think that OVAL is a good idea, I am not sure
that it has yet reached the critical mass needed for the benefits to
be widely realised.

There are quite a few other vulnerability scanners around; for
example Sara (Security Auditor’s Research Assistant) and Saint
(Security Administrator’s Integrated Network Tool). For a
comprehensive list, take a look at http://sectools.org/vuln-
scanners.html by Fyodor (the author of Nmap). LXF

LXF86.tut_security Sec2:91LXF86.tut_security Sec2:91 2/10/06 18:43:452/10/06 18:43:45

